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In this Letter, we report solution behavior of two imide-dipeptides containing L-alanine and L-leucine res-
idues. In contrast to natural sequence, the imide-dipeptidyl backbone contains distinct features: self-
pairing H-bonds, topochemical symmetry, a peptide polindron sequence, and different orientations of
side chains. The solution behavior in chloroform reveals that both the imide-dipeptides adopt b-folding
conformations and form b-sheet-like assembly. Most surprisingly, they form more stable and stronger H-
bonds than the natural counterpart, and thus show different H-bonding patterns from the natural
sequence.

� 2009 Elsevier Ltd. All rights reserved.
1a: R1 = R2 = -CH3
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Specific H-bonds between b-strand’s edges play a key role in
protein b-sheet interactions as well as protein–protein interac-
tions. Intermolecularly, linear b-strand mimetics1 behave and even
functions like the important structural motifs or scaffolds formed
by b-sheets. Current designs of linear b-strand mimetics usually
incorporate rigid motifs into peptide backbone.2–6 Since the dis-
covery of natural urea-containing peptide backbones,7 the urea
unit has been used to develop a set of short peptidomimetics,
which either adopt b-folding or form b-sheet-like assembly8 or he-
lix9 in solutions through the self-pairing H-bonds between �C@O
and –NHs of the urea unit. Similarly, the imide unit also provides
a complementary hydrogen-bonding building block, and thus
may be interesting to be incorporated into peptide backbone. We
will focus on the imide unit and the characteristic behavior of pep-
tidomimetics containing the imide moiety.

Natural peptide provides its backbone with a ‘sense of direc-
tion’. In a cyclic peptide, reversing its residue sequence and invert-
ing each residue’s chirality produce its cyclo-retro-enantiomer.10

Extending the retro-enantiomer concept to linear peptides gener-
ates the retro-inverso-peptide—a linear peptide isomer in which
the backbone orientation is reversed in the middle of the chain
and the side-chain orientation of each amino acid residue is also
inverted.11

Accordingly, we integrate the ‘retro-‘ concept and ‘imide’ unit to
reverse the orientation of the dipeptide backbone, as nature se-
lects,7 to construct imide-dipeptides. Scheme 1 exemplifies that
the imide-dipeptide backbone (1) introduces special chemical
structural features unmatched in the natural sequence (2), includ-
ll rights reserved.
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ing (i) self-pairing H-bonds; (ii) a peptide polindron sequence; (iii)
topochemical symmetry (C2 symmetry); (iv) different orientations
of the two side chains. As preliminary investigations, we choose
two imide-dipeptides (1a and 1b12) containing L-alanine and L-leu-
cine residues as models and report herein their solution behavior.
Surprisingly, the imide-dipeptides show strong and stable inter-
molecular H-bonding interactions compared to those of the natural
amino acid sequence.

Both 1a and 1b show excellent solubility in most of solvents
such as cyclohexane, benzene, dichloromethane, chloroform, alco-
hol, except water. In chloroform, the a-protons of 1a and 1b,
respectively, appear at 4.56 and 4.57 ppm, shifting 0.21 and
0.40 ppm downfield, respectively, from the random coil conforma-
tions of the L-alanine and L-leucine residues,13 an evidence that the
dipeptide chains adopt b-folding conformations. This is confirmed
by the 3JHNa value (8.0 Hz) of the a-protons of 1a. The b-sheet-like
assembly agrees with the ROE experiments of 1a and 1b. As shown
in Figure 1, the interstrand ROE between the carbamate-protons
and imide-protons, and the intrastrand ROEs between the a-pro-
tons and imide-protons and between the carbamate-/a-protons
1b: R1 = R2 = -i-Bu 2: R3 = -i-Bu

Scheme 1. Chemical structures of the imide-dipeptides (1) and a selected natural
sequence (2).
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Figure 1. Both (a) and (b) show part of the ROESY spectra of 1a in CDCl3 solution
carried out at 90 mM and 25 �C (mixing time 0.8 s). While the interstrand ROE
signal between the imide- and carbamate-protons is indicated by an arrow, the
intrastrand ROE signals between the a-protons and imide-protons and between the
carbamate-/a-protons and Boc-protons are labeled by an unfilled square and
unfilled circles, respectively.
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Figure 3. (a) Self-pairing and b-sheet-like assembly of 1, (b) concentration-
dependences of d-NHs, respectively, for the imide- and carbamate-protons of 1a in
CDCl3 (5 and 4), and 1b in CDCl3 (s and d) and in 6% CH3OH/CDCl3 (v/v) diluted,
respectively, with pure CDCl3 (j and h) or with 6% CH3OH/CDCl3 (w and q), (c)
concentration-dependent d-NHs of the amide-NHs of 2 in CDCl3 (+, *, and �).
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and Boc-protons indicate the b-sheet-like assembly of 1a and the
b-folding conformations of the dipeptide chains as dominant spe-
cies in chloroform. Similar interstrand and intrastrand ROE signals,
for examples, those shown in Figure 2a, also indicate the b-sheet-
like assembly of 1b and the b-folding conformations of the dipep-
tide chains.

Surprisingly, the imide-dipeptides exhibit very different H-
bonding behavior from that of the natural sequence. As shown in
Figure 3a, the imide-protons and carbamate-protons of 1a (down
and up triangles) and 1b (unfilled and filled circles) all reveal a
weak dependence on their concentrations, hinting either very
strong or weak intermolecular H-bonding interactions. This behav-
ior is distinct to that of compound 214 (Fig. 3b). The amide-protons
in 2 are most likely free of H-bonds at low concentrations (typi-
cally, <7 mM). However, the chemical shifts continuously and non-
linearly become higher and higher when concentrations increase,
suggesting the propensity to form H-bonds at high concentrations.

To clarify the ambiguity for H-bonding interactions of the
imide-dipeptides, we added 6% (v/v) methanol into a 23 mM 1b/
CDCl3 solution to disrupt the hydrogen-bonding network. First,
the experimental results reveal a dramatically downfield shift for
the imide-protons shifting from 9.03 to 9.90 ppm and for the car-
bamate-protons from 4.94 to 5.47 ppm (Fig. 3a and Table 1),
respectively. This implies that the addition of methanol completely
consumed the interpeptide H-bonds. Disrupting the interstrand H-
bonds leads to the formation of new competitive H-bonds between
methanol and –NHs which show a dramatically, nonlinearly up-
field shift if the solution is diluted with pure CDCl3 (Fig. 3a, filled
and unfilled squares), as the chloroform molecules may replace
some methanol molecules, effectively reducing H-bonding
Figure 2. Part of the ROESY spectra of 1b, respectively, in CDCl3 (a) and in 6%
CH3OH/CDCl3 (b) with a concentration of 23 mM (mixing time 0.8 s), showing that
the ROE signals between the imide-protons and carbamate-/a-protons in 6%
CH3OH/CDCl3 are much weaker than that in pure chloroform, which suggests
disruption of the b-sheet-like assembly after addition of 6% methanol. Both the
ROESY spectra are shown in the same zoom-in scales.
opportunities between dipeptide molecules and methanol. When
the solution of 23 mM 1b/CDCl3 + 6% methanol was further diluted
using 6% methanol/CDCl3 (v/v), however, the NHs exhibit a very
weak dependence (Fig. 3a, filled and unfilled stars), since the fur-
ther addition of methanol in 6% methanol/CDCl3 keeps the concen-
tration of methanol in the solution, and thus keeps H-bonding
opportunities between dipeptide and methanol molecules. Second,
Table 1
Shows chemical shifts (d, ppm) of 1a (90 mM) and 1b (23 mM) in different solvents

Solvents –NH1a –NH2b a-Hs b-sheet

1a CDCl3 9.30 5.13 4.32
pd

DMSO-d6 10.69 7.13 4.32 �d

1b Benzene-d6 8.94 4.86 4.61
p

CDCl3 9.04 4.93 4.58
p

6% MeOH/ CDCl3 (v/v) 9.90 5.47 4.53 �
DMSO-d6 10.71 7.14 4.49 �
CD3OD /c /c 4.47 �

a Imide-NH.
b Carbamate-NHs.
c Protons at –NH units are replaced by deuterium atoms of CD3OD.
d p and � represent formation and disruption of the b-sheet-like assembly,

respectively.



Table 2
Shows Dd/DT (ppb/K) of H-bonded-NHs of the imide-dipeptides 1a, 1b, and 2 in
chloroform

Carbamate-NH Imide-NH NH1 NH2 NH3

1aa �3.1 �10.3
1ba �2.8 �7.9
2a �10.4 �11.6 �11.0

Note: (a) 1a (25 mM), 1b (23 mM), and 2 (30 mM).
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ROE signals abated significantly when the b-sheet-like aggregates
were disrupted (Fig. 2a and b); these ROE signals originated be-
tween the interstrand imide-protons and carbamate-protons and
the intrastrand imide-protons and a-protons. The above two re-
sults suggest large scale disruption upon methanol addition, which
suggests that both the imide-dipeptides form into highly strong
intermolecular H-bonding interactions.

The b-sheet-like aggregates are supported again by X-ray struc-
tural analysis by depositing the 1b/CHCl3 solution, as an example,
onto the Si substrate. The scattering pattern shows two strong reflec-
tions, respectively, positioning at 2h = 7.28� and 19.70�. These two
reflections give two d-spacings of 12.1 and 4.5 Å, respectively, corre-
sponding to the stacking periodicity of the b-sheets and the spacing
between peptide backbones running orthogonal to the
b-sheet axis, typically characteristic of the b-sheet structures of 1b.15

Other solvents that are capable of forming H-bonding interac-
tions, such as DMSO-d6, produce similar effects except for methanol.
In non-H-bonding solvents such as benzene-d6, however, the imide-
dipeptides adopt b-folding conformations and form b-sheet-like
assembly, similar to what is formed in CDCl3, as listed in Table 1.

The temperature-variable NMR studies yielded much lower Dd/
DT values for the carbamate-protons than for the imide-protons
(Table 2), suggesting that the former forms stronger intermolecular
hydrogen-bonds and contributes much more to stabilize the H-
bonding network. Additionally, the lower Dd/DT values of the
imide-dipeptides than that of the natural sequence confirm again
that both of the imide-dipeptides possess much more stable H-
bonding interactions.

In summary, the above solution behavior reveals that the imide-
dipetides adopt b-folding conformations in non-H-bonding sol-
vents, exhibit strong hydrogen-bonding propensity, and form
much stronger and more stable b-sheet-like interactions than
those of the natural sequence. The feature of the imide-dipeptides
is notable. It opens an alternative way to create linear b-mimetic
motifs that generate different backbone H-bonding patterns.
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